## DEVELOPMENT OF SIO RAS HYDROPHYSICAL POLYGON IN THE SHELH-SLOPE ZONE OF THE NE BLACK SEA

A.G. Zatsepin<sup>1</sup>, A.G. Ostrovskii<sup>1</sup>, V.V. Kremenetskiy<sup>1</sup>, V.B.
Piotoukh<sup>1</sup>, S.B. Kuklev<sup>2</sup>, O.N. Kukleva<sup>2</sup>, L.V. Moskalenko<sup>2</sup>, O.I.
Podymov<sup>2</sup>, V.I. Baranov<sup>3</sup>, A.A. Kondrashov<sup>3</sup>, A.O. Korzh<sup>3</sup>, A.A.
Kubryakov<sup>4</sup>, D.M. Soloviev<sup>4</sup>, S.V. Stanichny<sup>4</sup>

<sup>1</sup> P.P. Shirshov Institute of Oceanology, RAS <sup>2</sup> Southern Branch of the P.P. Shirshov Institute of Oceanology, RAS

<sup>3</sup>Atlantic Branch of the P.P. Shirshov Institute of Oceanology, RAS <sup>4</sup>Marine Hydrophysical Institute, NAS, Ukraine.

MARES2020, September, 17-20, Varna, Bulgaria

## Preamble.

The basic tool for monitoring and research of the shelf-slope zone of the ocean are an anchored automatic stations with near-real time data transmittion placed at selected testing areas. Such testing area was developed in NE Black Sea near Gelendzhik where the Southern Branch of SIO RAS is located.

## Brief description of autonomous moored and bottom stations placed at the testing area

1. "Aqualog" (SIO RAS) - a new ocean

autonomous profiler for

multiparametric surveys at fixed

geographical locations.

#### Real time data and command transmission Radio/satellite/phone buoy e Cable Subsurface floatation Ε Inductive modems 0 0 0 -. Sensors -Θ 8 5 1 -Carrier 8 rofilin Wire

Acoustic release

Anchor

1

Aqualog

### Moored profiler Aqualog, 2009



## An example of a long-term continuous profiling of the upper 200-м layer (31/10/2011 - 17/04/2012)

Temperature, °C

![](_page_5_Figure_2.jpeg)

## An example of a long-term continuous profiling of the upper 200-м layer (31/10/2011 - 17/04/2012)

**Specific density** 

![](_page_6_Figure_2.jpeg)

## An example of a long-term continuous profiling of the upper 200-м layer (31/10/2011 - 17/04/2012)

#### Alongshore velocity, m/s

![](_page_7_Figure_2.jpeg)

# Scheme of formation of 5-10 daily fluctuations

![](_page_8_Picture_1.jpeg)

× - Moored profiler "Aqualog"

![](_page_8_Figure_3.jpeg)

### 2. Bottom mounted ADCP

3. Moored thermistor chain

![](_page_9_Picture_2.jpeg)

![](_page_9_Figure_3.jpeg)

## Real time data transmission from bottom ADCP and moored thermistor chain: connection scheme

![](_page_10_Figure_1.jpeg)

## ADCP online data - 1

![](_page_11_Figure_1.jpeg)

#### WaveMon software by RD Instruments

### ADCP online data - 2

#### WinRiver software by RD Instruments

![](_page_12_Figure_2.jpeg)

6 hours

### Thermistor chain online data

![](_page_13_Figure_1.jpeg)

#### 6 hours

## The scheme of the SIO RAS testing area

![](_page_14_Figure_1.jpeg)

## Small (27-ton) R/V "Ashamba"

![](_page_15_Picture_1.jpeg)

# Spatial velocity field survey by towed ADCP in a streamlined body

![](_page_16_Picture_1.jpeg)

## Submesoscale eddies at the Black Sea shelf

![](_page_17_Figure_1.jpeg)

**Right picture:** microwave radar image of the sea surface with well pronounced cyclonic (**C**) submesoscale eddy.

**Left picture:** submesoscale anticyclonic (**A**) eddy in the upper mixed layer identified from the velocity field obtained by towed ADCP survey.

Separation of Rim current from the cape Idocopas as a generation mechanism of submesoscale anticyclons (MERIS-Envisat, 07-08.10.11)

![](_page_18_Figure_1.jpeg)

# Formation of submesoscale cyclones due to shear instability of the alongshore current

![](_page_19_Figure_1.jpeg)

Circulation scheme in the NE Black Sea imposed at the Modis-Terra satellite image of 25/09/2012. "A" and "C" – mesoscale anticyclones and cyclone, correspondingly

![](_page_20_Picture_1.jpeg)

A study of the velocity field in identified at the satellite image submesoscale cyclone by means of towed **ADCP** 

![](_page_21_Figure_1.jpeg)

Towed ADCP acoustic backscatter signal at the sections across the submesoscale cyclone: signs of upwelling in the eddy core

Sections through the eddy core

![](_page_22_Picture_2.jpeg)

Typical vertical profile of *in situ* measured cholorophyll\_a concentration in the NE Black Sea (01/10/2012)

![](_page_22_Figure_4.jpeg)

## Some plans

- 1. Further development of measurement technology and real time data transmission. Spreading of the testing area to the deeper part of the sea.
- 2. Collaboration with other Black Sea countries in order to develop a set of similar testing areas at the coastal zone around the whole sea.
- 3. The usage of the obtained data for the verification of numerical modeling results

The work was supported by the RAS Program No 23, Russian-Ukrainian Program "Black Sea as a simulation model of the ocean" and EC FP7 PERSEUS project

## Thank you!

![](_page_24_Picture_1.jpeg)